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Abstract In this paper we investigate the relation between scalar continuity and rep-
resentability of monotone preference orders in a sequence space. Scalar continuity is
shown to be sufficient for representability of a monotone preference order and easy to
verify in concrete examples. Generalizing this result, we show that a condition, which
restricts the extent of scalar discontinuity of a monotone preference order, ensures rep-
resentability. We relate this condition to the well-known order dense property, which
is both necessary and sufficient for representability.

1 Introduction

In this paper, we consider the problem of representability of monotone preference
orders on a sequence space.1 Monotone preferences are especially compelling in the
theory of social evaluation of intertemporal utility streams since if no one is worse
off, then the society as a whole should not be worse off (see Diamond 1965, p. 172).
However, monotone preferences (expressing that “more is better”) have also been used
in the theory of individual preferences on commodity bundles, at least since the study
of Wold (1943).2

1 We consider both finite and infinite sequence spaces as the theory developed here holds regardless
of the dimension of the space.
2 For a comprehensive discussion of Wold’s result on the existence of a continuous utility function
representing a preference order, see Beardon and Mehta (1994).
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474 T. Mitra, M.K. Ozbek

The general characterization of representability of a preference ordering is the order
dense property,3 and this, of course, applies to our setting.4 However, as is well known,
the order dense property can be difficult to apply to concrete examples to decide on the
representability (or non-representability) of a preference ordering. Thus, our objec-
tive is to present a sufficient condition for representability which provides a partial
characterization but which is relatively easy to check in concrete examples.

We focus on a novel concept of scalar continuity of preferences, which may be
described as follows. Given any utility stream x , consider the set of constant utility
streams which are at least as good as x , and the set of constant utility streams which
are at most as good as x . These sets can be identified with sets of scalars, since constant
utility streams are scalar multiples of the constant utility stream with constant utility
equal to one. The preference order is scalar continuous if these sets of scalars are closed
subsets of the real line. Thus scalar continuity requires continuity of preferences on
the diagonal of the space of utility streams, and is therefore easy to verify. One of our
main results (Proposition 2) is that a monotone, scalar continuous preference order
can always be represented by a real valued function.

Here is a brief outline of the contents of the paper. Section 2 introduces the notation
and definitions. In Sect. 3, we associate with any monotone preference order a pseudo
utility function μ which provides a weak representation of the order.5 No continuity
condition is imposed to obtain this pseudo utility function.

In Sect. 4, we present our main representation results. In Proposition 2, we show
that if the order satisfies a scalar continuity condition, then it is representable by the
function μ.6 Generalizing this result, we establish in Theorem 1 that when the set of
equivalence classes (indifference curves) which have points of scalar discontinuity, is
countable, then there exists a representation for the order. We indicate how countable
scalar discontinuity condition can be used to verify the order dense property. How-
ever, this condition is not equivalent to the order dense property; an example is given
to show that countable scalar discontinuity is not necessary for representability of a
monotone preference order.

In Sect. 5, we consider a number of representation results which have been devel-
oped in the literature. We show that these results can be derived easily by applying
Proposition 2 and Theorem 1.

Finally, in Sect. 6 we conclude and in an Appendix, we provide two examples to
illustrate the relationship between our concept of scalar continuity, and the concepts
of sup-norm continuity and restricted continuity used in the literature.

3 Order dense property requires the existence of a countable subset which is dense in its given superset
with respect to the underlying order topology. For a formal definition of this notion, see Remark 1, p. 8.
4 For expositions of this characterization result, see Fishburn (1970), Kreps (1988) and Bridges and Mehta
(1995).
5 This terminology follows Peleg (1970).
6 This terminology follows Weibull (1985), who uses a similar concept of continuity.
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On representation of monotone preference orders in a sequence space 475

2 Notation and definitions

Let N denote, as usual, the set of natural numbers {1, 2, 3, . . .}, and let R denote the set
of real numbers. Let Y denote the closed interval [0, 1], and let X denote the set Y M

where M ∈ N ∪ {∞}.7 Thus, x ∈ X if and only if xn ∈ [0, 1] for all n ∈ N such that
n ≤ M for some M ∈ N ∪ {∞}. One can interpret xn as the utility level of generation
n, and x as an infinite stream of these utility levels or xn as the consumption level of
good n, and x as a finite bundle of these consumption levels.

The constant sequence of zeros in X will be denoted by 0, and the constant sequence
of ones in X will be denoted by e. We denote the set of all constant sequences in X ,
{λe ∈ X : λ ∈ [0, 1]}, by C and we call it the diagonal in X .

For y, z ∈ R
M with M ∈ N ∪ {∞}, we write y ≥ z if yi ≥ zi for all i ∈ N such

that i ≤ M ; y > z if y ≥ z, and y �= z, and y � z if yi > zi for all i ∈ N such that
i ≤ M .

A preference ordering is a binary relation, � on X , which is complete and tran-
sitive. We associate with � its asymmetric and symmetric components by 	 and ∼
respectively.

A preference ordering � on X is called monotone (M) if the following condition
holds:

(M) If x, y ∈ X and x ≥ y, then x � y.
We say that a preference ordering � on X is strongly monotone (SM) if it satisfies

the following efficiency condition:
(SM) If x, y ∈ X, with x > y, then x 	 y.
When x and y are utility streams, then (SM) is the standard Pareto principle. Clearly

the former efficiency condition is implied by the latter one. Strong monotonicity also
implies the following condition called weak Pareto:

(WP) If x, y ∈ X and x � y, then x 	 y.
A preference ordering � on X is representable if there is a function, u : X → R,

such that for all x, y ∈ X,

x � y if and only if u(x) ≥ u(y) (R)

Given a preference ordering � on X, for each x ∈ X the Lower and Upper Con-
tour Sets are defined as LC(x) = {y ∈ X : x � y} and UC(x) = {y ∈ X : y � x}
respectively.

Given a topology T for X , we say that � is T -continuous on X if for each x ∈ X,

the lower and upper contour sets ( LC(x) and UC(x)) of x are closed subsets of X in
the topology T .

7 We use this notation to accommodate both the finite dimensional and infinite dimensional sequence
spaces.
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3 Weak representation of a monotone preference order

We will associate with a monotone preference order � on X a pseudo utility function
μ : X → R which provides a weak representation of it; that is,

If x, y ∈ X and x � y, then μ(x) ≥ μ(y) (WR)

Condition WR implies that if x, y ∈ X and x ∼ y, then μ(x) = μ(y). Also, if
x, y ∈ X and μ(x) > μ(y), then x 	 y. However, it allows for the possibility that
x, y ∈ X satisfy x 	 y, but μ(x) = μ(y). It is in this respect that the representation
is weak.

For each x ∈ X define the following subsets of the [0, 1] interval:

A(x) = {λ ∈ [0, 1] : λe � x}; B(x) = {λ ∈ [0, 1] : x � λe} (1)

Note that while upper and lower contour sets are subsets of X , the sets A(x) and B(x)

are subsets of the real line.

Proposition 1 Let � be a monotone preference ordering on X. Then, � has a weak
representation.

Proof We obtain a weak representation as follows. For each x ∈ X, define A(x) as in
(1) and let α(x) be the infimum of the set A(x). That is:

α(x) = inf
λ∈A(x)

λ for each x ∈ X (2)

Note that since � is monotone, A(x) is non-empty and so α(x) is well-defined. Clearly,
α(x) ∈ [0, 1] for each x ∈ X . We claim that α(x) satisfies condition WR. Let x, y ∈ X
satisfy x � y. By (1), we have A(x) ⊂ A(y) and thus α(x) ≥ α(y) by the monoto-
nicity of an infimum. �

Note that α is not the only possible weak representation of � on X . For instance,
one can define B(x) as in (1) and let β(x) be the supremum of the set B(x) for each
x ∈ X . That is:

β(x) = sup
λ∈B(x)

λ for each x ∈ X (3)

Since � is monotone, B(x) is non-empty and thus β(x) is well-defined. Clearly,
β(x) ∈ [0, 1] for each x ∈ X . Moreover, if x, y ∈ X with x � y, then B(x) ⊃ B(y)

by (1) and so β(x) ≥ β(y) by the monotonicity of a supremum. Therefore, β satisfies
condition WR and is a weak representation of � on X .

In general, these two functions, α and β, need not be equal. However, α(x) can
be at most β(x) for each x ∈ X . For if α(x) > β(x) for some x ∈ X , then we can
pick some θ ∈ (β(x), α(x)). Since � is complete and thus A(x) ∪ B(x) = [0, 1] by
(1), θ ∈ (0, 1) must belong to A(x) or B(x). However, if θ ∈ A(x), we must have
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θ ≥ α(x) by (2), a contradiction. And, if θ ∈ B(x), we must have θ ≤ β(x) by
definition of β(x), a contradiction. Thus we have:

α(x) ≤ β(x) for all x ∈ X (4)

In addition, by using α and β one can define many similar functions as well to
serve as weak representations for the preference order �. To see this, let k ∈ (0, 1)

and define the function μk : X → [0, 1] as follows:

μk(x) = kα(x) + (1 − k)β(x) for all x ∈ X (5)

Then if we let x, y ∈ X with x � y, we get μk(x) = kα(x) + (1 − k)β(x) ≥
kα(y) + (1 − k)β(y) = μk(y) exhibiting WR.

We note here that if the preference order is monotone and satisfies Weak Pareto,
then it can be shown that α(x) = β(x) = μk(x) for all k in (0, 1). However, monotone
preference orders satisfying Weak Pareto need not be representable. The well-known
example of the lexicographic preference order (see Debreu 1954) satisfies Strong
Monotonicity, and therefore is a monotone preference order satisfying Weak Pareto,
but is not representable.8

4 Representation of a monotone preference order: a sufficient condition

In this section, we use the weak representation result of Sect. 3 to provide a repre-
sentation for monotone preference orders. For this purpose, we use a weak notion of
continuity of preferences, called scalar continuity, to present our first representation
result (Proposition 2). We then generalize this result to cover cases in which preference
orders might exhibit a limited extent of scalar discontinuity (Theorem 1).

The following lemma is useful in obtaining our representation results.

Lemma 1 Let � be a monotone preference ordering on X. Suppose x in X is a point
such that the sets A(x) and B(x) defined in (1) have a non-empty intersection. Then
μk(x)e ∼ x where μk is defined in (5).

Proof Let x be in X be such that A(x)∩ B(x) is non-empty. We have α(x) ≤ β(x) by
(4) and so we have two cases to consider; (i) α(x) < β(x), (ii) α(x) = β(x). In case
(i), using (5) we get α(x) < μk(x) < β(x). Then by (2) and (3), we have μk(x) ∈
A(x) ∩ B(x) and so by (1), x ∼ μk(x)e. In case (ii), we have α(x) = μk(x) = β(x)

by (5). Thus given that A(x) ∩ B(x) is non-empty and using (2) and (3), for any
λ ∈ A(x) ∩ B(x), we get α(x) ≤ λ ≤ β(x), and so λ = μk(x). This shows that
μk(x) ∈ A(x) ∩ B(x) and therefore by (1), we infer that x ∼ μk(x)e. �

The following weak notion of continuity will be used in the next representation
result.

8 For a comprehensive study of complete preference orders which are not representable by a real valued
function, see Beardon et al. (2002). As the characterization result in that paper indicates, these turn out
to be of four types; an open question is which types can occur for complete preference orders which are
monotone.
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Definition 1 We say that � is scalar continuous on X if for each x ∈ X, the sets A(x)

and B(x) defined in (1) are closed in the standard topology on R.

Sup-norm continuity (see Example 3 in Sect. 5) implies restricted continuity (see
Example 4 in Sect. 5), which in turn implies scalar continuity. Further, as is shown in
Example 1 in the Appendix, there are monotone preference orders which satisfy scalar
continuity, but violate restricted continuity and (therefore) sup-norm continuity. And,
as shown in Example 2 in the Appendix, there are monotone preference orders which
satisfy restricted continuity but violate sup-norm continuity.

We can now state the following representation result for monotone preference
orders.

Proposition 2 If a monotone preference ordering � is scalar continuous on X, then
� is representable, and μk, defined in (5), represents it.

Proof We know by (5) that μk is a weak representation of �. Thus it remains to show
that when x, y ∈ X and x 	 y, we must have μk(x) > μk(y).

Since � is scalar continuous, A(x) and B(x) are closed subsets in [0, 1] for each
x ∈ X . Moreover, since � in X is complete, then the union A(x) ∪ B(x) exhausts
the interval [0, 1] which is a connected set. Thus, A(x) ∩ B(x) must be non-empty
for all x ∈ X . Thus, by Lemma 1 we have μk(x)e ∼ x 	 y ∼ μk(y)e so that
μk(x)e 	 μk(y)e by transitivity. This implies μk(x) �= μk(y), and since by (WR),
μk(x) ≥ μk(y), we must have μk(x) > μk(y). �

4.1 A refinement of the representation result

For any preference order � on X, let:

D = {x ∈ X : A(x) ∩ B(x) = ∅} (6)

When x ∈ D, we refer to it as a point of scalar discontinuity of the preference order �
on X . When D is empty, we say that the order � has no points of scalar discontinuity
in X .

The ability to represent � depends crucially on (loosely speaking) “how many”
points of scalar discontinuity there are. To make this notion precise, we make the
preliminary remark that if x ∈ X is a point of scalar discontinuity, and y ∼ x, then y
is also a point of scalar discontinuity. To see this, suppose x ∈ D. Since y ∼ x, we
have A(x) = A(y) and B(x) = B(y), and so A(y) ∩ B(y) = ∅ implying that y ∈ D.

In view of this remark, proceed to form the following partition of D. For each
x ∈ D, let E(x) = {z ∈ X : z ∼ x}; clearly E(x) is non-empty since x ∈ E(x). For
all x, y ∈ X, we have either E(x) disjoint from E(y), or E(x) = E(y); further:

⋃

x∈D

E(x) = D

Let � be the collection {E(x) for some x ∈ D}. Then, � is a partition of D. In order
to see “how much” scalar discontinuity the preference order exhibits, it is enough to
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look at “how many” equivalence classes there are in �. We can now introduce the
following condition:

Countable scalar discontinuity condition:
The collection � has at most a countable number of equivalence classes.
We now show that this countable scalar discontinuity condition is sufficient for the

representability of a monotone preference order.

Theorem 1 If a monotone preference ordering � on X satisfies the countable scalar
discontinuity condition, then � is representable.

Proof Let {F1, F2, . . .} be an enumeration of the set �. For each Fn ∈ �, let r(Fn) =
(1/2n). Let F be the collection of all subsets of � and define a function π : F → R as
follows:

π(�′) =
{∑

Fn∈�′ r(Fn) if �′ is non-empty
0 otherwise

(7)

Note that since the sequence {r(Fn)} is summable, π is well-defined, and indeed for
any �′ ∈ F, π(�′) ∈ [0, 1].

For each x ∈ X , let W (x) = {y ∈ X : x 	 y} and P(x) = {y ∈ X : y 	 x}. Note
that for any x ∈ X , the sets W (x) and P(x) together separate � into its subsets as for
any Fn ∈ �, either Fn ⊂ W (x) or Fn ⊂ P(x) or Fn ∩ [W (x) ∪ P(x)] = ∅. For any
x ∈ X , let �∗(x) = {Fn ∈ � : Fn ⊂ W (x)} and �∗(x) = {Fn ∈ � : Fn ⊂ P(x)}, and
define the function:

ρ(x) = π(�∗(x)) − π(�∗(x)) (8)

Since π is bounded on F, ρ is well-defined. Now consider the function u : X → R

defined as:

u(x) = μk(x) + ρ(x) (9)

where μk is defined in (5). We claim that u represents the ordering � on X .9

Let x, y ∈ X such that x � y. Then by the definition of the sets �∗ and �∗, we
have �∗(y) ⊂ �∗(x) and �∗(x) ⊂ �∗(y). Thus by (7) and (8), we get ρ(x) ≥ ρ(y)

and so by (5) and (9), u(x) ≥ u(y).
Now let x, y ∈ X such that x 	 y. By (5) we have μk(x) ≥ μk(y). If μk(x) >

μk(y), then we have u(x) > u(y) by (9) and the fact that ρ(x) ≥ ρ(y). If, however,
μk(x) = μk(y), then x ∈ D or y ∈ D must hold. Otherwise, by Lemma 1 we have
x ∼ y, a contradiction. In both cases, x ∈ D or y ∈ D, one of the two set inclusions,
�∗(y) ⊂ �∗(x) and �∗(x) ⊂ �∗(y), must be strict and so we must have ρ(x) > ρ(y).
Thus, by (9) u(x) > u(y) which establishes the claim. �

9 Our representation shows a link between measure and utility theory as the function π , defined in (7), is a
simple measurable function. On a general approach using measure theory in constructing a representation,
see Voorneveld and Weibull (2009).
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Remark 1 Using the countable scalar discontinuity condition, one can directly check
the order dense property for any monotone preference order; that is, one can find a
countable subset Z which is order dense in X .10 To see this, let Q = {qe ∈ X : for
some rational number q}. Then Q ⊂ X is countable. By countable scalar discontinu-
ity, � is countable and so by using the Axiom of Denumerable Choice,11 one can pick
an element from each E ∈ �; call this g(E). Then the set F = {g(E) ∈ X : E ∈ �}
is also countable and so Z = Q ∪ F is a countable subset of X . We now verify that Z
is order dense in X .

Let x, y ∈ X, with x 	 y. There are two cases to consider; (i) either x or y ∈ D
or (ii) neither x nor y ∈ D. In case (i), without loss of generality, let x ∈ D. Then
z = g(E(x)) ∈ F and x ∼ z. Thus we have x � z � y. In case (ii), we have μk(x) >

μk(y) by Lemma 1 and so there exists z = qe ∈ Q such that μk(x) > q > μk(y). By
monotonicity of the order, we then have μk(x)e � qe � μk(y)e and so x � z � y.
This shows that Z is order dense in X .12

Remark 2 A topic that has been discussed extensively in the social choice literature
is the possible incompatibility of an efficiency concept like Strong Pareto with an
equity concept like Anonymity when X = Y ∞. Basu and Mitra (2003) showed that
any preference order satisfying Strong Pareto and Anonymity cannot be represented
by a real valued function. Further, although Svensson (1980) showed that preference
orders satisfying Strong Pareto and Anonymity exist, the results of Zame (2007) and
Lauwers (2010) imply that such preferences cannot be constructed and require the
use of the Axiom of Choice or similar contrivance for demonstrating their existence.

Our Theorem 1 implies that any preference order satisfying Strong Pareto and Ano-
nymity must have an uncountable number of equivalence classes, which have points
of scalar discontinuity. Recall that if x ∈ X is a point of scalar discontinuity, then
there is no λ ∈ [0, 1] such that λe is indifferent to x . [For, if there were such a λ, then
this λ would belong to both A(x) and B(x), contradicting the fact that x is a point
of scalar discontinuity.] Thus, there is an uncountable number of indifference curves,
generated by such a preference order, which are disjoint from the diagonal of X . This
provides further insight about the nature of efficient and equitable preference orders
on infinite utility streams.

An example
We now present an example in X = Y 2 to show that the countable scalar dis-

continuity condition is not a necessary condition for representability of a monotone
preference order �. This also shows that for monotone preference orders, countable
scalar discontinuity is not equivalent to the order dense property. Thus, Theorem 1 is
only a partial characterization of the representability of a monotone preference order.

10 Z is order dense in X (in the sense of Debreu) if x, y ∈ X and x 	 y imply that there is some z ∈ Z ,

such that x � z � y (See Bridges and Mehta 1995, pp. 11, 12).
11 This axiom of set theory is a weak form of the Axiom of Choice. For an exposition of the Axiom of
Choice, see Munkres (1975, p. 59).
12 Thus the result of Theorem 1 also follows by appealing to the order dense characterization result on
representability if one grants the Axiom of Denumerable Choice.
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Let us define u(x1, x2) for all (x1, x2) ∈ X = Y 2 as follows:

u(x1, x2) =
⎧
⎨

⎩

x1 for x1 ∈ [0, (1/2))

(1/2) + x2 for x1 = (1/2)

1 + x1 for x1 ∈ ((1/2), 1]
(10)

Then, define � on X as follows. For x, y ∈ X, x � y if and only if u(x) ≥ u(y).
Then � is clearly a preference order, and it is monotone.

Let U = {x ∈ X : x1 = (1/2) and x2 ∈ ((1/2), 1]}. Note that whenever x ∈ U,

we have A(x) = ((1/2), 1] and B(x) = [0, (1/2)]. Thus D ⊃ U . Moreover, for any
x, x ′ ∈ U , we have x ∼ x ′ if and only if x = x ′. Thus, � ⊃ {{x} : x ∈ U } and so � is
uncountable. But, (10) is clearly a representation of � on X .

5 Applications of the representation result

We now consider four different representation results which have been derived in the
literature. Our aim, here, is to show that each example below provides sufficient con-
ditions to derive scalar continuity and/or countable scalar discontinuity conditions,
and thereby to demonstrate that these well-known representation results follow from
our results established in Sect. 4.

Example 1: Wold’s representation
The first theory on the existence of a continuous representation for a preference

order was given in a fundamental paper of Wold (1943). Wold considers strongly
monotone preference order, and establishes a representation by showing that every
indifference class meets the diagonal given the condition below. We show how this
result can be obtained by applying Proposition 2.

Let X = Y n for some n ∈ N and let � be a strongly monotone preference order on
X satisfying the following continuity condition:

Wold: For any x, y, z ∈ X such that x 	 y 	 z, there exist some a, b ∈ (0, 1) such
that ax + (1 − a)z 	 y 	 bx + (1 − b)z.

Using strongly monotone preferences, x ∼ 0 if and only if x = 0, and x ∼ e if and
only if x = e. Further A(0) = [0, 1], B(0) = {0}, and A(e) = {1}, B(e) = [0, 1].
Thus, for x ∼ 0, A(x) and B(x) are closed sets; and for x ∼ e, A(x) and B(x) are
closed sets. Consider then any x ∈ X, such that e 	 x 	 0. We show that A(x) is closed
as follows. Let {λs}∞s=1 be a convergent sequence of elements in A(x), converging to
λ0. We have to show that λ0 ∈ A(x). If this is not the case, then we have λ0 ∈ [0, 1],
and e 	 x 	 λ0e. So, λ0 < 1, and by Wold’s condition, there is b ∈ (0, 1), such that
x 	 [bλ0 +(1−b)]e. Since λs → λ0 as s → ∞ and λ0 < [bλ0 +(1−b)] , we can find
s′ large enough for which λs′

< [bλ0 + (1 − b)]. But, then, x 	 λs′
e, a contradiction

to the fact that λs ∈ A(x) for all s ∈ N. Thus, λ0 ∈ A(x), and A(x) is closed. We can
show that B(x) is closed by following a similar line of proof. Thus, the preference
order � satisfies scalar continuity and is representable, by using Proposition 2.

If the preference order is monotone but not strongly monotone, the sets A(x) and
B(x) need not be closed for all x ∈ X . Consider the preference relation � on X for
which x ∼ e if xn > 0 for some n ∈ N, and e 	 0. This is easily seen to be a
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preference order, which is monotone. Further, Wold’s condition is trivially satisfied
since one cannot find three points x, y, z in X satisfying x 	 y 	 z. Now, if x ∈ X
with x �= 0, then A(x) = (0, 1], so A(x) is not closed. Thus, � does not satisfy scalar
continuity, and Proposition 2 is not applicable.

However, if the preference order is monotone, and Wold’s condition is satisfied,
we can still show that the preference order is representable by using Theorem 1 as
follows. By using Wold’s condition, one can show the following fact (see Fishburn
1970, p. 33).

Fact: If x, y, z ∈ X such that x > y > z, then there exists some a ∈ [0, 1] such
that y ∼ ax + (1 − a)z.

We claim that there is no point of scalar discontinuity of � and thus by Theorem 1,
� is representable. To see this, let y ∈ X . We have e ≥ y ≥ 0. If y = 0 or y = e,
then A(y) ∩ B(y) is non-empty. If y �= 0 and y �= e, then e > y > 0. Then by the
fact above, there is some a in [0, 1] such that y ∼ ae + (1 − a)0 = ae showing that
A(y) ∩ B(y) is non-empty for any y ∈ X .

Example 2: weighted utilitarian representation
In the theory of social choice, one of the prominent judgment criteria on the welfare

of the society is called (weighted) utilitarianism. This method seeks to maximize the
society’s collective welfare obtained by summing (weighted) individual utilities [see
d’Aspremont and Gevers (2002) for a discussion of available characterization results].
We show below how one can achieve the existence of a representation for a preference
order satisfying a set of axioms used in this literature.

Let X = Y n for some n ∈ N and let � be a monotone preference order on X
satisfying WP and the following two conditions:

Minimal individual symmetry (MIS): For all i, j ∈ {1, 2, . . . , n}, there exist
x, y ∈ X such that xi > yi , x j < y j , xk = yk for all k ∈ {1, 2, . . . , n}\{i, j}, and
x ∼ y.

Strong invariance (SI): For all x, y ∈ X , x � y implies that for all z ∈ R
n and all

b ∈ R++, we have (bx + z) � (by + z) whenever (bx + z), (by + z) ∈ X .
We claim that � is scalar continuous on X . Let I = {1, 2, 3, . . . , n}. By using MIS,

SI and WP, we can easily find a unique vector (qi )i∈I � 0 such that ei ∼ qi e for
each i ∈ I . Thus by using SI, we can infer that for any x ∈ X , x ∼ λ(x)e where
λ(x) = ∑

i∈I qi xi . Note that for all x in X we have λ(x) ∈ [0, 1] since
∑

i∈I qi = 1
and xi ∈ [0, 1] for every i ∈ I , and thus λ(x) ∈ A(x) ∩ B(x).

Since the preference order satisfies WP, we can infer that α(x) = β(x) for all x in
X . To see this, let α(x) < β(x). Define ε = β(x) − α(x), and find δ ∈ (0, (ε/2)),

μ ∈ A(x) and η ∈ B(x) such that μ < α(x) + δ and η > β(x) − δ. Then, η >

β(x) − (ε/2) = [β(x) − α(x)] + α(x) − (ε/2) = α(x) + (ε/2) > μ so that we have,
using the fact that � is monotone x � ηe 	 μe � x contradicting the transitivity of
�.

Since λ(x) ∈ A(x) ∩ B(x), we have a non-empty intersection of A(x) and B(x)

and thus we must have λ(x) = α(x) = β(x) for each x ∈ X . Thus α(x) ∈ A(x)

and β(x) ∈ B(x) and so A(x) = [λ(x), 1] and B(x) = [0, λ(x)] by (2) and (3). This
shows that A(x) and B(x) are closed in Y and therefore the preference order is scalar
continuous, and has a representation by using Proposition 2.
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Mitra and Ozbek (2010) show that whenever a preference order satisfies MIS,
Invariance (a weaker form of SI), WP, and has a representation, then it also has a
weighted utilitarian representation. Thus Proposition 2 together with the conditions
above, ensures a weighted utilitarian representation for the preference ordering.

Example 3: Diamond’s representation on infinite utility streams
The framework for analysis of social preference orders on infinite utility streams was

introduced by Koopmans (1960). Diamond (1965) established the existence of a rep-
resentation for monotone preference orders, which satisfy weak Pareto and sup-norm
continuity. We now show how his existence result can be derived from Proposition 2.13

Let X = Y ∞ and let � be a monotone preference order on X satisfying WP, and:
Sup-norm continuity: For each x ∈ X, the Lower and Upper Contour Sets,

LC(x) = {y ∈ X : x � y} and UC(x) = {y ∈ X : y � x} respectively, are closed
with respect to the sup-norm.

We claim that � satisfies scalar continuity. Let x ∈ X . Then the two sets UC(x)∩C
and LC(x) ∩ C are closed in the sup-norm topology since C , the set of constant se-
quences in X, is also a closed set in the sup-norm topology. One can easily verify that
the function π : [0, 1] → C, defined as π(k) = ke for every k ∈ [0, 1], is continuous.
Then we have A(x) = π−1(UC(x) ∩ C) and B(x) = π−1(LC(x) ∩ C) showing that
A(x) and B(x) are closed sets in [0, 1]. Thus � satisfies scalar continuity and so � is
representable by Proposition 2.

Example 4: Asheim–Mitra–Tungodden representation on infinite utility
streams

Preference orders on infinite utility streams, which can be represented, exhibit a
conflict if the order is required to satisfy certain equity and efficiency axioms simul-
taneously (See Diamond 1965, Basu and Mitra 2003, Hara et al. 2008, and others).

Seeking a way out of such impossibility results, Asheim et al. (2012) introduce
weak versions of efficiency and equity, together with a weak continuity requirement
to establish a class of sustainable recursive social welfare functions for monotone
preference orders. In doing this, they first show the existence of representation for the
preference orders by using a continuity condition called “restricted continuity” which
is weaker than the usual sup–norm continuity. We show here how one can derive the
existence of a representation by appealing to Proposition 2.

Let X = Y ∞ and let � be a monotone preference order on X satisfying the follow-
ing continuity condition:

Restricted continuity: For all x, y ∈ X , if x satisfies xt = z for all t > 1, and the
sequence streams {xn}n∈N satisfies limn→∞ supt |xn

t − xt | = 0 with, for each n ∈ N,
xn � y (resp. y � xn), then x � y (resp. y � x).

We claim that � satisfies scalar continuity. Let x ∈ X and consider set A(x). By
definition of α(x), there exists a sequence {λs}s∈N in A(x) such that λs → α(x) as
s → ∞. Define xs = λse ∈ X for all s ∈ N. Then by definition of set A(x), we
have xs � x for all s ∈ N. Moreover, as s → ∞, xs → α(x)e in sup-norm metric.
Thus by restricted continuity α(x)e � x and so α(x) ∈ A(x) using definition of

13 This approach coincides with Yaari’s given in a footnote in Diamond (1965).
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set A(x). Since the order � is monotone, we must have A(x) = [α(x), 1] which is
a closed set in [0, 1]. Following a similar argument for set B(x), one can show that
B(x) = [0, β(x)] which is also a closed set in [0, 1]. Thus � satisfies scalar continuity
and so by Proposition 2, � is a representable preference order.

6 Conclusion

In this paper, we have investigated the relation between scalar continuity and repre-
sentability of monotone preference orders in a sequence space. Scalar continuity is
shown to be sufficient for representability of a monotone preference order (Lemma 1).
Generalizing this result, we have shown that a countable scalar discontinuity condition
ensures representability of a monotone preference order (Theorem 1). Although these
conditions are not necessary conditions for representability of a monotone preference
order, they are very useful for applications. We have demonstrated this by indicating
how some of the well-known representation results from the literature follow from
our representation results established in Lemma 1 and Theorem 1. Moreover, we have
related the countable scalar discontinuity condition to the well-known order dense
property (Remark 1), which is both necessary and sufficient for representability.

Acknowledgements We would like to thank Ram Sewak Dubey for comments on an earlier version of
the paper. The present version has benefited from suggestions by two referees of this journal.

Appendix: Scalar continuity, restricted continuity and sup-norm continuity

In this section, we show that (i) there are monotone preference orders which satisfy
scalar continuity, but violate restricted continuity and (therefore) sup-norm continuity
(Example 1); and (ii) there are monotone preference orders which satisfy restricted
continuity but violate sup-norm continuity (Example 2).

Example 1 We first construct the example without specifying any dimension for the
sequence space, but we later indicate which case of it we are using, finite or infinite,
when we are considering the relevant conditions for that case.

Let (qn)n≤M be a sequence for some M ∈ N ∪ {∞} satisfying:

qn > 0 for all n ≤ M and
M∑

n=1

qn = 1 (A1)

Let f : X → R be defined by:

f (x) =
{∑M

n=1 qn xn if xn > 0 for all n ≤ M
0 otherwise

(A2)

Note that the sum in the definition of f in (A2) converges for any x ∈ X and thus f
is well-defined. Define � by:
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For all x, y ∈ X , x � y if and only if f (x) ≥ f (y) (A3)

Then, � is a preference ordering on X , and f is a real-valued representation of it.
Since f is increasing, [that is, for any x, y ∈ X, x ≥ y implies f (x) ≥ f (y) and
x � y implies f (x) > f (y)] by (A3) we have for any x, y ∈ X, if x ≥ y, then x � y
and if x � y, then x 	 y and thus, � is monotone and it also satisfies WP.

Scalar continuity: Let x ∈ X . Then by (A2) and (A3), A(x) = [ f (x), 1] and
B(x) = [0, f (x)] which are both closed sets in [0, 1] showing that � satisfies scalar
continuity.

Restricted continuity: We now show that � does not satisfy restricted continuity
on X = Y ∞. Let z = (1 − q1)e and consider the sequence {xn}∞n=1 in X where
xn = ( 1

n , 1, 1, 1, . . .) for all n ∈ N. Then for all n ∈ N, we have f (xn) = (1 −
( n−1

n )q1) ≥ (1 − q1) = f (z) implying by (A3) that:

xn � z for all n ∈ N (A4)

Let x = (0, 1, 1, 1, . . .) in X and note that:

d(xn, x) = 1

n
→ 0 as n → ∞ (A5)

We have by (A2), f (x) = 0 < (1 − q1) = f (z), and hence by (A3):

z 	 x (A6)

But then (A4), (A5) and (A6) imply that � on Y ∞ violates the restricted continuity
condition.

Sup-norm continuity: Since continuity of an order in sup-norm topology implies
restricted continuity, we infer from the result above that � on X = Y ∞ does not satisfy
sup-norm continuity.

We now observe that Example 1 also demonstrates that representation of the pref-
erence order in this example cannot be obtained by applying the representation results
of Wold (1943), Diamond (1965), d’Aspremont and Gevers (2002), and Asheim et al.
(2012).

Since in this example, restricted continuity and therefore sup-norm continuity, is
violated, the representation results of Asheim et al. (2012) and Diamond (1965) are
not applicable. We verify below that the example also violates Wold’s continuity con-
dition and Strong Invariance, so that the representation results of Wold (1943) and
d’Aspremont and Gevers (2002) are also not applicable.

Wold: Let � be an order on X = Y n defined in (A3) for some given n ∈ N. Let
x = e ∈ X , y = (1 − q1)e ∈ X and z = (e − e1) ∈ X . Then, by (A2), we have
f (x) = 1 > (1 − q1) = f (y) > f (z) = 0 and so by (A3), x 	 y 	 z. Let a ∈ (0, 1)

and define w(a) = ax + (1 − a)z. We have w(a) = (e − (1 − a)e1). By (A2), we get
f (w(a)) = (1−(1−a)q1) > (1−q1) = f (y) and so by (A3), w(a) 	 y. This shows
that there is no b ∈ (0, 1) such that y 	 w(b). Thus, the order � does not satisfy the
condition of Wold.
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Strong invariance: Let � be an order on X = Y n defined in (A3) for some given
n ∈ N. Let x = (e − e1) ∈ X , y = ((1 − q1)/2)e ∈ X , b = 1 and z = (1/2)e1 ∈ R

n .
Then we have (x+z) = (e−(1/2)e1) ∈ X and (y+z) = ((1−q1)/2)e+(1/2)e1 ∈ X .
Moreover, by (A2) f (y) = ((1 − q1)/2) > 0 = f (x) and so by (A3), y 	 x . Simi-
larly, by (A2), f (x + z) = 1 − (1/2)q1 > ((1 − q1)/2) + (1/2)q1 = f (y + z) and
so by (A3), (x + z) 	 (y + z) showing that SI is not satisfied.

Example 2 Let X = Y ∞ and consider a sequence (qn)n∈N defined as in (A1). Let
g : X → R be defined by:

g(x) =
{∑∞

n=1 qn xn if xn > 0 for all n > 1
q1x1 otherwise

(A7)

Note that the sum in the definition of g in (A7) converges for any x ∈ X and thus g
is well-defined. Define � by:

For all x, y ∈ X, x � y if and only if g(x) ≥ g(y) (A8)

Then, � is a preference ordering on X , and g is a real-valued representation of it.
Since g is increasing [that is, for any x, y ∈ X, x ≥ y implies g(x) ≥ g(y) and x � y
implies g(x) > g(y)], by (A8) we have for any x, y ∈ X, if x ≥ y, then x � y and if
x � y, then x 	 y and thus, � is monotone and it also satisfies WP.

Sup-norm continuity: We first show that � does not satisfy sup-norm continuity
on X = Y ∞. Let z = (1 − q2)e and consider the sequence {xn}∞n=1 in X where
xn = (1, 1

n , 1, 1, . . .) for all n ∈ N. Then for all n ∈ N, we have g(xn) = (1 − q2) +
(1/n)q2 ≥ 1 − q2 = g(z) implying by (A8) that:

xn � z for all n ∈ N (A9)

let x = (1, 0, 1, 1, . . .) in X and note that:

d(xn, x) = 1

n
→ 0 as n → ∞ (A10)

We have by (A1) and (A7), g(x) = q1 < 1 − q2 = g(z), and hence by (A8), we get:

z 	 x (A11)

But then (A9), (A10) and (A11) imply that � on Y ∞ violates the sup-norm continuity
condition.

Restricted continuity: We now show that the order � satisfies the restricted conti-
nuity condition. To see this, let y ∈ X and {xn}∞n=1 be a sequence in X with xn � y for
all n ∈ N converging in sup-norm to some x ∈ X such that for all m > 1, xm = a for
some a ∈ [0, 1] (A similar line of argument can be given for the case where y � xn

for all n ∈ N). There are two cases to consider: either (i) there exists N ∈ N such that
for every n ≥ N , xn

m > 0 for all m > 1 or (ii) for every N ∈ N there exists n ≥ N
such that xn

m(n) = 0 for some m(n) ∈ N with m(n) > 1.
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In case (i), by (A7) and (A8) we have g(xn) = qxn ≥ g(y) for all n ≥ N . Since
qx is sup-norm continuous, we have qxn → qx as n → ∞ and so qx ≥ g(y). Note
that since for all m > 1, xm = a for some a ∈ [0, 1], we have g(x) = qx and so we
must have g(x) ≥ g(y) implying that x � y.

In case (ii), we can find a subsequence {xnk }∞k=1 such that xnk
mk = 0 for some mk ∈ N

with mk > 1. Thus for all k ∈ N, by (A7) and (A8) we have g(xnk ) = q1xnk
1 ≥ g(y).

Since we have xnk → x as k → ∞ in sup-norm, we must have xnk
1 → x1 as k → ∞

and thus q1xnk
1 → q1x1 as k → ∞. Therefore, by (A1), (A7) and (A8) we get

g(x) ≥ q1x1 ≥ g(y) inferring that x � y.
Scalar continuity: Note that since the monotone order � on X = Y ∞ satisfies

restricted continuity, it must also satisfy scalar continuity following the discussion
given in Example 4 of Sect. 5.
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